Carbene transposition involving double dehydrogenation of an sp³ carbon[†]

Joseph N. Coalter III, John C. Huffman and Kenneth G. Caulton*

Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, IN 47405-7102, USA. E-mail: caulton@indiana.edu

Received (in Cambridge, UK) 14th March 2001, Accepted 3rd May 2001 First published as an Advance Article on the web 7th June 2001

Two benzylic hydrogens of 2,6-Me₂C₆H₃O⁻ coordinated to RuCl(PCy₃)₂(CHPh)⁺ are transferred to the benzylidene ligand, liberating toluene to form a new carbene which is covalently linked to the aryloxide ligand.

Replacement of the chloride ligand in the olefin metathesis catalyst $RuCl_2(CHR)LL'$ (L, L' = tertiary phosphines or other neutral donors) by other pseudohalides has been actively studied, but no clear trends or dramatic improvements in reactivity have yet to emerge.¹ Two groups^{2,3} have recently reported replacement of both chlorides by alkoxides on the benzylidene complex, with the result [eqn. (1)] that some

M = Li, Na, K OR = OBu^t, OAdamantyl

combination of steric and electronic (*e.g.* π -donor) effects causes loss of one PCy₃ to give a four-coordinate species with an apparent 14-valence electron count. This species is attractive because it has an empty orbital *cis* to the carbene ligand, a feature lacking in isolable RuCl₂(CHR)L₂. Fluoroalkoxide analogs have also been synthesized,² but phenoxides behave very differently³ [eqn. (2)], proceeding further to a benzylidyne

$$RuCl_{2}(CHPh)L_{2} + 2 PhO^{-} \xrightarrow{-2Cl^{-}} Ru(OPh)_{2}(CHPh)L_{2}$$

$$\xrightarrow{-PhOH} \qquad (2)$$

$$PhO-Ru \equiv CPh$$

$$L$$

product by liberation of phenol. We now report the wholly distinct consequence of increasing the steric bulk of the phenoxide

Reaction of RuCl₂(CHPh)(PCy₃)₂ with NaOC₆H₃Me₂-2,6 THF (NaOAr·THF: 1 equiv) in THF proceeds rapidly to a benzylidene complex with only one coordinated phosphine and *one* coordinated aryloxide (a second equivalent of NaOAr·THF does not replace a second Cl⁻) [**A**, eqn. (3)]. This product is RuCl₂(CHPh)L₂

† Electronic supplementary information (ESI) available: synthetic and spectroscopic data. Crystallographic data and selected bond lengths and angle for **B**. See http://www.rsc.org/suppdata/cc/b1/b102422c/

proven to have only one phosphine by the carbene proton doublet structure (16.8 ppm), as well as by the observation of free phosphine (by ³¹P NMR). This product then evolves more slowly by transfer of two hydrogens from one ortho-methyl group of the aryloxide to the benzylidene carbon $[\mathbf{B}, \text{eqn.} (3)]$. After purification on an alumina column, the product **B** clearly shows the following ¹H NMR signals: one aryl methyl signal, of intensity three, only three aryl ring chemical shifts, each of unit intensity, and a Ru=CHR singlet at 16.4 ppm (unit intensity). Curiously, this carbene proton signal of **B** shows no resolved multiplet structure, although unresolved broadening is evident. The formation of toluene is also observed, as is the disappearance of free PCy₃, in the conversion of A to B. The ¹³C{¹H} NMR supports this assignment, showing six aromatic signals, one ArCH₃ signal (16.1 ppm), diastereotopic CH₂ ring carbons for the PCy₃ ligands, and a broad signal at 277.7 ppm for Ru=C.

A crystal structure determination of **B** (Fig. 1)‡ confirms this remarkable transformation. The coordination geometry at Ru is the traditional square-pyramidal, but one anionic ligand is now covalently linked to the carbene ligand. As shown in **C**

(distances in Å, angles in degrees), this unusual carbene/ aryloxide ligand forms a planar five-membered chelate ring without substantial angular distortion at the carbene carbon. The

Fig. 1 ORTEP drawing of the nonhydrogen atoms of **B**. Selected distances (Å): Ru–C(10) 1.872(7), Ru–O(3) 2.082(4), Ru–Cl(2) 2.3910(17), Ru–P(12) 2.3947(19), Ru–P(31) 2.4005(19).

five-membered ring interior angles sum to 539.9° (540° if planar), and the angles that suffer the greatest compression are that at aryloxide oxygen (111.8° is small for M–O–Aryl) and at Ru (compare C=Ru–O of 80.9° to C=Ru–Cl of 107.8°). There are no agostic interactions between the cyclohexyl hydrogens and the open coordination site *trans* to the carbene (shortest Ru–C 3.3 Å).

The accumulated empirical evidence¹ shows that the magnitude of the ${}^{3}J_{\rm PH}$ value is dependent on the dihedral angle P–Ru=C–H, and thus the orientation of the carbene plane with respect to the P–Ru line can be estimated. In intermediate **A**, ${}^{3}J_{\rm PH}$ is large enough to be readily resolved (6 Hz), consistent with calculation and experiment, which give a dihedral angle of *ca*. 0°. In **B**, where no ${}^{3}J_{\rm PH}$ is resolved, the carbene hydrogen has a dihedral angle of 90°, consistent with earlier reports that ${}^{3}J_{\rm PH}$ in this conformation is near zero.¹

Numerous recent developments in olefin metathesis chemistry have been directed to appending a good leaving group to reduce the L:Ru ratio in the molecule to 1:1, or to attach the molecule to a polymer to facilitate separation of catalyst from product.⁴ What the present report offers is the potential for more permanent (*i.e.* anion-tethered) attachment of the *initial* carbene to the molecule, which contrasts to attachment *via* a pendant neutral donor (olefin⁵ or ether⁶).

The *mechanism* of the double hydrogen transfer that converts a methyl to a carbene in eqn. (3) is not yet established. However, the precedent⁷ that 14-electron Ru^{II} recruits agostic interactions from sterically accessible C–H hydrogens makes **D** a likely starting point on this transformation. The driving *force* for this reaction appears to be steric in origin, since only *one* ArO– replaces chloride in the initial step of eqn. (3) and since the sterically expelled phosphine recoordinates when the bulky aryloxide and the benzylidene ligands are combined compactly into a single ligand incorporating both RO^- and carbene functionalities. Toluene elimination also provides an entropic assist worth *ca*. 8 kcal mol⁻¹ at 300 K.⁸ The different behavior shown by tertiary alkoxides or phenoxide and by 2,6-dimethylphenoxide is certainly due to the reactivity of benzylic hydrogens.

This work was supported by the donors of the Petroleum Research Fund, administered by the American Chemical Society.

Notes and references

‡ *Crystal data* for C₄₇H₈₀ClOP₂Ru **B**: *M* = 859.62, triclinic, space group *P*Ī, brown/green crystals, *a* = 12.5352(16), *b* = 13.7485(18), *c* = 14.4562(20) Å, *α* = 73.591(4), *β* = 69.803(4), *γ* = 78.316(4)°, *V* = 2227.6(8) Å³, *Z* = 2, *T* = -161 °C, *D*_C = 1.282 g cm⁻³, *μ* = 5.17 cm⁻¹, *F*(000) = 922. The final conventional *R* factor was 0.0503 for 6249 data and 465 parameters, *R*_W(*F*) = 0.0440 and GOF = 1.21. CCDC 161342. See http://www.rsc.org/suppdata/cc/b1/b102422c/ for crystallographic data in CIF or other electronic format.

- 1 T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2001, 34, 18.
- 2 M. S. Sanford, L. M. Heling, M. W. Day and R. H. Grubbs, Angew. Chem., Int. Ed., 2000, 39, 3451.
- 3 J. N. Coalter, III, J. C. Bollinger, O. Eisenstein and K. G. Caulton, *New J. Chem.*, 2000, 24, 925.
- 4 Q. Yao, Angew. Chem., Int. Ed., 2000, 39, 3896.
- 5 J. A. Tallarico and P. J. Bonitatebus and M. L. Snapper, J. Am. Chem. Soc., 1997, 119, 7157.
- 6 J. S. Kingsbury, J. P. A. Harrity, P. J. Bonitatebus and A. H. Hoveyda, J. Am. Chem. Soc., 1999, **121**, 791.
- 7 D. Huang, K. Folting and K. G. Caulton, J. Am. Chem. Soc., 1999, 121, 10318.
- 8 M. E. Minas da Piedade and J. A. M. Simoes, J. Organomet. Chem., 1996, 518, 167.